2価金属と水素イオンの反応に 関する教材開発 反応ギブズエネルギーと 反応進行度の関係

日本理科教育学会第75回全国大会

日時:2025年8月24日,14:15-14:30

2S3-01

会場:富山大学五福キャンパス

○中川 徹夫

(神戸女学院大学生命環境学部)

2価金属と水素イオンの反応

2価金属と水素イオンH+の化学反応 M(s) + 2H+(aq) → M²+(aq) + H₂(g)

M(s): 2価金属(固体)M = Cu、Zn、Mg

H+(aq): 水素イオン(水溶液中)

M²⁺(aq): 2価金属イオン(水溶液中)

 $Cu(s)/H^+(aq)$, $Zn(s)/H^+(aq)$, $Mg(s)/H^+(aq)$

化学反応とエネルギー4

・2価金属と水素イオンH+の化学反応 $M(s) + 2H+(aq) \rightarrow M^2+(aq) + H_2(g)$ において、データブックを使用して、標準状態 (298.15 K 10^5 Pa) における ΔH^0 、 ΔS^0 、 ΔG^0 を算出(混合の効果考慮せず)。

▲G^o:反応の自発性の有無

 ΔG < 0:自発変化が生じる → 反応が起こる

 $\Delta G > 0$:自発変化が生じない→ 反応が起こ

らない

ΔH °、 ΔG °と ΔS °の推算値

	ΔH^{\prime} /kJ·mol ⁻¹	$\Delta G^{\circ}/kJ\cdot mol^{-1}$	$\Delta S^{\circ}/J\cdot K^{-1}\cdot mol^{-1}$
Cu(s)/H+(aq)	64.8	65.5	-2.1
$Cu(s)/[H^{+}(aq) + H_{2}O_{2}(aq)]$	-315.6	-274.3	-136.7
Zn(s)/H+(aq)	-153.9	-147.1	-23.0
Mg(s)/H+(aq)	-466.9	-454.8	-40.1

青:△*G* < 0 ⇒自発変化が起こる

赤: △G>0 ⇒自発変化が起こらない

```
M(s) + 2H^{+}(aq) \rightarrow M^{2+}(aq) + H_{2}(g) M(s)、H^{+}(aq)、M^{2+}(aq)、H_{2}(g) を、それぞれ成分1、2、3、4とする。\Delta_{f}G_{1}^{\circ} = \Delta_{f}G_{2}^{\circ} = \Delta_{f}G_{4}^{\circ} = 0, a_{1} = a_{4} = 1, a_{i} = x_{i} M(s) + 2H^{+}(aq) \rightarrow M^{2+}(aq) + H_{2}(g) 1 mol 2 mol 0 0 0 -\alpha - 2\alpha + \alpha + \alpha + \alpha 1 mol -\alpha 2(1 mol -\alpha) \alpha \alpha
```

$$n_2 = 2(1 \text{ mol} - \alpha)$$
, $n_3 = \alpha$, $n = n_2 + n_3 = 2 \text{ mol} -\alpha$
 $x_2 = 2(1 - \alpha/\text{mol})/(2 - \alpha/\text{mol})$, $x_3 = (\alpha/\text{mol})/(2 - \alpha/\text{mol})$

 $\Delta_f G_i^\circ$:標準生成ギブズエネルギー、 a_i :活量、 x_i : モル分率、

 α : 反応進行度 (0 mol $\leq \alpha \leq 1$ mol)

 n_i :水和イオンの物質量、n:水和イオンの物質量の総計

```
G = n_3 \Delta_f G_3^\circ + RT[n_2 \ln x_2 + n_3 \ln x_3]
= \alpha \Delta_f G_3^\circ + RT[2(1 \text{ mol} - \alpha) \ln (2(1 - \alpha/\text{mol})/(2 - \alpha/\text{mol}))
+ (\alpha/\text{mol}) \ln ((\alpha/\text{mol})/(2 - \alpha/\text{mol}))]
= G^\circ + RT[2(1 \text{ mol} - \alpha) \ln (2(1 - \alpha/\text{mol})/(2 - \alpha/\text{mol}))
+ (\alpha/\text{mol}) \ln ((\alpha/\text{mol})/(2 - \alpha/\text{mol}))]
```

G: 系のギブズエネルギー(混合を考慮)

G: 系のギブズエネルギー(混合を考慮せず)

 α : 反応進行度 (0 mol $\leq \alpha \leq$ 1 mol)

 $\Delta_f G_3$ °: 成分3(M^2 +(aq))の標準生成ギブズエネルギー

R: 気体定数,T: 絶対温度

$$\Delta G = \left(\frac{\partial G}{\partial \alpha}\right)_{T,P}$$

$$= \Delta_f G_3^\circ + RT \ln \left[(\alpha/\text{mol})(2 - \alpha/\text{mol})/(4(1 - \alpha/\text{mol})^2) \right]$$

$$= \Delta G^\circ + RT \ln \left[(\alpha/\text{mol})(2 - \alpha/\text{mol})/(4(1 - \alpha/\text{mol})^2) \right]$$

$$= \Delta G^\circ + RT \ln Q$$

 $\Delta_f G_3$ °: 成分3(M^2 +(aq))の標準生成ギブズエネルギー

△G:標準反応ギブズエネルギー(混合を考慮)

 ΔG :標準反応ギブズエネルギー(混合を考慮せず)

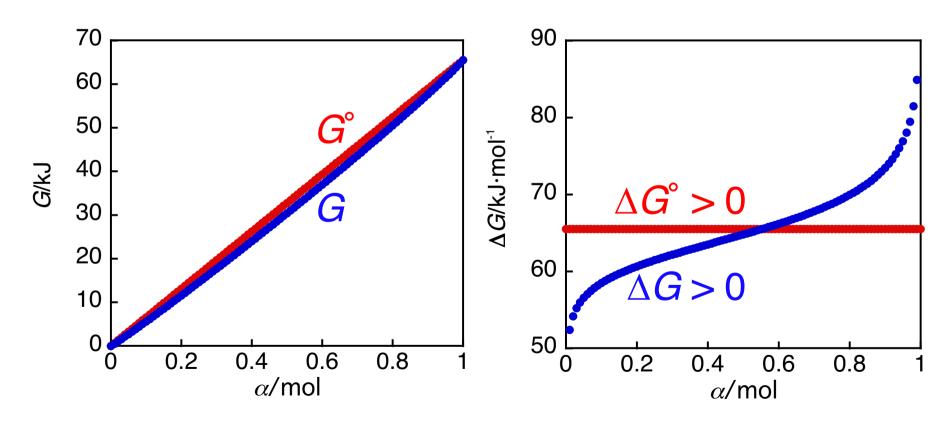
 α : 反応進行度 (0 mol $\leq \alpha \leq 1$ mol)

Q: 反応商、K: 平衡定数

```
\Delta G = \Delta G^\circ + RT \ln Q Q = (\alpha/\text{mol})(2 - \alpha/\text{mol})/(4(1 - \alpha/\text{mol})^2) 化学平衡時は\Delta G = 0であり、そのときのQをKとすると、\Delta G^\circ = -RT \ln K K = (\alpha_e/\text{mol})(2 - \alpha_e/\text{mol})/(4(1 - \alpha_e/\text{mol})^2) \alpha_e = 1 - 1/(4K + 1)^{1/2}
```

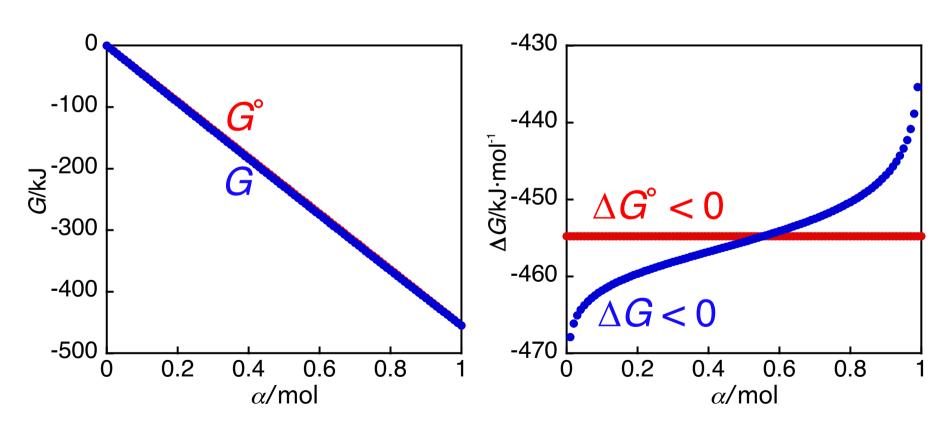
 ΔG :標準反応ギブズエネルギー(混合を考慮)

 ΔG :標準反応ギブズエネルギー(混合を考慮せず)

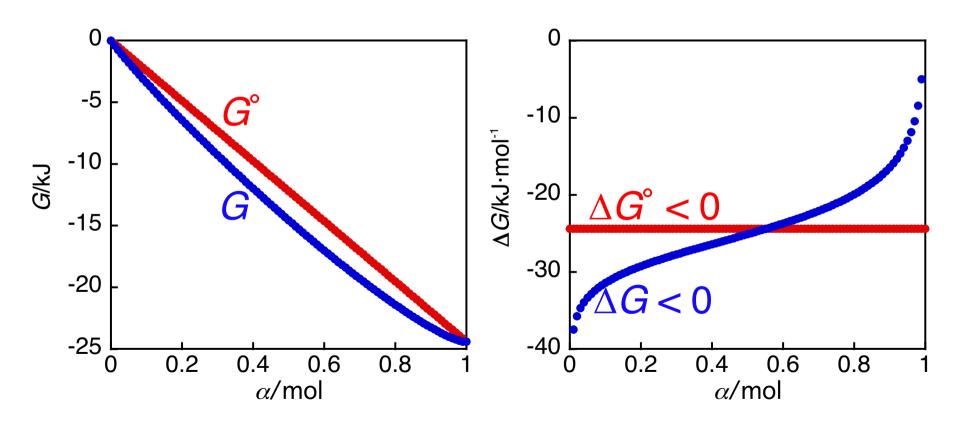

 α : 反応進行度 (0 mol $\leq \alpha \leq 1$ mol)

 $\alpha_{\rm e}$: 化学平衡時の反応進行度($0 \, {
m mol} \leq lpha \leq 1 \, {
m mol}$)

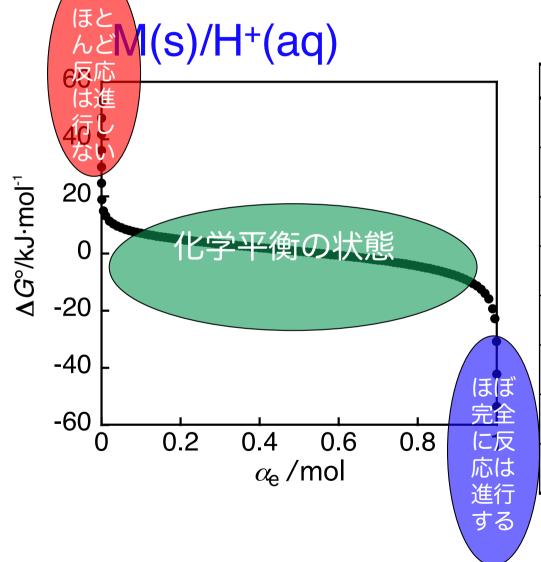
Q:反応商、K:平衡定数


$G \succeq \Delta G$ 1

Cu(s)/H+(aq)


$G \succeq \Delta G 3$

$Mg(s)/H^+(aq)$



$G \succeq \Delta G 5$

Pb(s)/H+(aq)

ΔG °の α_e 依存性

$lpha_{ m e}/{ m mol}$	$\Delta G^{\circ}/kJ\cdot mol^{-1}$	
1.00000 x 10 ⁻⁸	47.4	
1.00000 x 10 ⁻⁷	41.7	
1.00000 x 10 ⁻⁶	36.0	
1.00000 x 10 ⁻⁵	30.3	
0.999000	-30.8	
0.999900	-42.2	
0.999990	-53.6	
0.999999	-65.1	

ΔG °、Kと α_e の推算値

	$\Delta G^{\circ}/\text{kJ}\cdot\text{mol}^{-1}$	K	$lpha_{ m e}/{ m mol}$
Cu(s)/H+(aq)	65.5	3.35 x 10 ⁻¹²	6.69 x 10 ⁻¹²
Zn(s)/H+(aq)	-147.1	5.90 x 10 ²⁵	≈ 1.00
Mg(s)/H+(aq)	-454.8	4.76 x 10 ⁷⁹	≈ 1.00
Sn(s)/H+(aq)	-27.2	5.82 x 10 ⁴	9.98 x 10 ⁻¹
Pb(s)/H+(aq)	-24.4	1.88 x 10 ⁴	9.96 x 10 ⁻¹

青:△G<0 ⇒自発変化が起こる

緑: ΔG < 0 ⇒自発変化が起こる(α_e まで)

赤: △G>0 ⇒自発変化が起こらない