Development of Teaching Materials on Spontaneity of Chemical Reactions: Solid Divalent Metals with Aqueous Divalent Metal Cations using Theoretical and Microscale Experimental Approach

OP11(16:50-17:10, on July 26, 2025)

10th Network of Inter-Asian Chemistry Educators [NICE] Conference 2025, Yamagata

Tetsuo Nakagawa

School of Life and Environmental Sciences, Kobe College, JAPAN

Development of Teaching Materials by Handmade Well Plates

Solid Divalent Metal M

+ Aqueous Divalent Metal Cation N²⁺

M, N = Cu, Zn and Mg

$$M(s) + N^{2+}(aq) \rightarrow M^{2+}(aq) + N(s)$$

- \cdot Zn(s)/Cu²⁺(aq), Cu(s)/Zn²⁺(aq)
- $Mg(s)/Zn^{2+}(aq)$, $Zn(s)/Mg^{2+}(aq)$
- $Mg(s)/Cu^{2+}(aq)$, $Cu(s)/Mg^{2+}(aq)$

Microscale Experiments 1

Microscale Experiments 4

 $Zn(s)/Cu^{2+}aq$ $Cu(s)/Zn^{2+}aq$

Mg/Zn²⁺aq Zn/Mg²⁺aq

Mg/Cu²+aq Cu/Mg²+aq

+: Reacted

-: Not Reacted

$$\Delta H^{\circ}$$
, ΔG° and ΔS°

$$\Delta H^{\circ} = \sum v_{p} \Delta_{f} H_{p}^{\circ} - \sum v_{r} \Delta_{f} H_{r}^{\circ}$$

$$\Delta G^{\circ} = \sum v_{p} \Delta_{f} G_{p}^{\circ} - \sum v_{r} \Delta_{f} G_{r}^{\circ}$$

$$\Delta S^{\circ} = \sum v_{p} S_{p}^{\circ} - \sum v_{r} S_{r}^{\circ}$$

 $\Delta_f H_i^\circ$: Standard Enthalpy of Formation

 $\Delta_f G_i^{\circ}$: Standard Gibbs Energy of Formation

 S_i° : Standard Entropy

 v_i : Stoichiometric Coefficient

i = p, r: Each Product and Reactant, respectively

Ref: *CRC Handbook of Chemistry and Physics*, 100th, CRC Press, 2019 (Data Sources)

	∆ <i>H</i> ⁰/kJ·mol⁻¹	Δ <i>G</i> $^{\circ}$ /kJ·mol ⁻¹	$\Delta S^{\circ}/J\cdot K^{-1}\cdot mol^{-1}$
Zn(s)/Cu ²⁺ (aq)	-218.7	-212.6	-20.9
Cu(s)/Zn ²⁺ (aq)	218.7	212.6	20.9
Mg(s)/Zn ²⁺ (aq)	-313.0	-307.7	-17.1
Zn(s)/Mg ²⁺ (aq)	313.0	307.7	17.1
Mg(s)/Cu ²⁺ (aq)	-531.7	-520.3	-38.0
Cu(s)/Mg ²⁺ (aq)	531.7	520.3	38.0

```
\Delta G^{\circ} < 0 \Rightarrow Reactions progress.
```

 $\Delta H^{\circ} < 0 \Rightarrow$ Driving Force (Exothermic).

 $[\]Delta G^{\circ} > 0 \Rightarrow$ Reactions do not progress.

```
Ideal solution model
 N^{2+}(aq) \rightarrow M^{2+}(aq) \ (:: \Delta_f G_{M(s)}^{\circ} = \Delta_f G_{N(s)}^{\circ} = 0), \ a_i = x_i
G = (1 \text{ mol} - \alpha) \Delta_f G_{N2+}^{\circ} + \alpha \Delta_f G_{M2+}^{\circ}
   + R\Pi(1 \text{ mol} - \alpha)\ln(1 - \alpha/\text{mol}) + \alpha \ln(\alpha/\text{mol})
   = G^{\circ} + R \pi (1 \text{ mol} - \alpha) \ln (1 - \alpha/\text{mol}) + \alpha \ln (\alpha/\text{mol})
i = N^{2+}(aq), M^{2+}(aq), a_i: Activity, x_i: Mole Fraction
G: Gibbs Energy Change including Mixing
G: Standard Gibbs Energy Change without Mixing
\alpha: Extent of Reaction (0 mol \leq \alpha \leq 1 mol)
\Delta_f G_i^{\circ}: Standard Gibbs Energy of Formation
R: Gas Constant, T: Absolute Temperature
```

$$\Delta G = \left(\frac{\partial G}{\partial \alpha}\right)_{T,P}$$

$$= -\Delta_f G_{N2+}^{\circ} + \Delta_f G_{M2+}^{\circ} + RT \ln \left[(\alpha/\text{mol})/(1 - \alpha/\text{mol}) \right]$$

$$= \Delta G^{\circ} + RT \ln \left[(\alpha/\text{mol})/(1 - \alpha/\text{mol}) \right]$$

 $\Delta_f G_i^{\circ}$: Standard Gibbs Energy of Formation

ΔG: Gibbs Energy Change including Mixing

ΔG°: Standard Gibbs Energy Change without Mixing

 α : Extent of Reaction (0 mol $\leq \alpha \leq$ 1 mol)

$$Zn(s) + Cu^{2+}(aq)$$

$$Cu(s) + Zn^{2+}(aq)$$


```
at Chemical Equilibrium,

\Delta G = \Delta G^{\circ} + RT \ln \left[ (\alpha_{\rm e}/{\rm mol})/(1-\alpha_{\rm e}/{\rm mol}) \right] = 0

\therefore \Delta G^{\circ} = -RT \ln \left[ (\alpha_{\rm e}/{\rm mol})/(1-\alpha_{\rm e}/{\rm mol}) \right] = -RT \ln K
```

 $\alpha_{\rm e}$: Extent of Reaction at Chemical Equilibrium (0 mol $\leq \alpha \leq$ 1 mol)

K: Equilibrium Constant

Conclusions

The microscale experiment teaching materials on the reactions of solid divalent metals [Cu(s), Zn(s) and Mg(s)] with aqueous divalent metal cations [Cu²⁺(aq), Zn²⁺(aq) and Mg²⁺(aq)] have been developed using low-cost handmade well plates.

The ΔG values obtained from thermodynamical calculations are consistent with the results of microscale experiments.